
Let's get you to the right place.
Let's get you to the right place.
PIM
Gérez l’ensemble du contenu produit au sein d’un système de référence unique de la donnée produit.
Activation
Syndiquez aisément le contenu produit vers tous les points de contact.
Enhanced Content
Étoffez vos pages produit avec le contenu enrichi.
Catalog Sites
Partagez votre catalogue digital personnalisé et à jour.
Automatisation
Améliorez la collaboration grâce à l’outil de génération automatisée de flux de travail de Salsify.
Activation Insights
Optimisez en continu la syndication de contenu produit.
GDSN Data Pool
Synchronisez les attributs supply chain, marketing et e-commerce.
Plateforme PXM, intégrations et API
Intégrez la plateforme PXM à votre architecture système.
Embarquement fournisseurs
Accélérez l’embarquement fournisseurs tout en respectant le modèle de données.
Product Listing
Vendez plus rapidement grâce au référencement produit.
Content Enrichment
Augmentez le taux de conversion grâce à l’enrichissement de données.
Automatisation
Gagnez du temps et améliorez votre efficience opérationnelle grâce à l’automatisation.
Plateforme SXM, intégrations et API
Intégrez la plateforme SXM à votre architecture système.
Réseau d’activation
Automatisez les échanges de données produit.
Réseau contenu enrichi
Transformez vos pages produit en expériences avec Enhanced Content
Intégrations avec les plateformes e‑commerce
Dotez vos sites d’expériences produit de qualité avec notre solution e‑commerce.
GDSN Data Pool
Synchronisez les attributs supply chain, marketing et e-commerce.
Open Catalog
Publiez votre contenu grâce à un catalogue de contenu libre et standardisé.
Ressources
Centre de ressources
Explorez nos ressources e-commerce pour tout savoir sur le digital shelf.
Blog
Lisez notre blog e-commerce pour suivre l’évolution du marché.
Webinaires
Regardez nos webinaires à la demande pour obtenir conseils et astuces d’experts en e-commerce.
Blog des développeurs
Parcourez notre blog des développeurs pour obtenir des ressources, des éclairages et des conseils.
Événements
Inscrivez-vous aux événements à venir, en présentiel ou à distance, pour rencontrer d’autres professionnels du secteur.
Base de connaissances
Consultez notre base de connaissances pour développer vos connaissances et vos compétences en tant qu’utilisateur de Salsify.
Mises à jour produits
Découvrez l’actualité des produits Salsify.
API
Consultez les guides sur les webhooks et les API Salsify pour une prise en main rapide.
Découvrez les éléments indispensables pour satisfaire les acheteurs.
La mauvaise qualité d’une donnée peut être liée à différents facteurs : cette donnée peut être erronée, incomplète, incohérente ou obsolète.
Les conséquences d’une mauvaise qualité de la donnée sont nombreuses et certaines peuvent être chiffrées. C’est le cas des amendes et pénalités qu’un distributeur évitera si ses données produit sont conformes à la réglementation mais aussi du temps passé par une équipe à corriger ou à compléter manuellement des données produit.
Certains coûts sont plus complexes à évaluer, comme le nombre de ventes perdues causées par une information erronée ou incomplète sur une page produit. Selon l’Étude consommateurs 2021 de Salsify, 70 % des acheteurs ont indiqué que le manque d'informations est la principale raison pour laquelle ils ont quitté une page produit. D’autres conséquences sont directement imputables à la mauvaise qualité de la donnée produit : l’augmentation des retours produit, le temps passé par les équipes à vérifier une donnée et le sentiment d’insatisfaction.
Le coût de données erronées est élevé. Selon Harvard Business Review, une tâche effectuée avec une donnée erronée engage un coût 100 fois supérieur à celui d’une donnée vérifiée ou correcte. Cette étude s’appuie sur la règle 1-10-100, développée par George Labovitz et Yu Sang Chang en 1992 : appliquée à la problématique de la qualité de la donnée, cette règle obéit à une logique implacable illustrant l'importance de maintenir un niveau élevé de qualité des données, de manière continue et non pas occasionnelle.
La vérification de la qualité d'une donnée coûte 1 $ à l'entreprise. C'est le coût de la prévention. Le nettoyage de la donnée (suppression d’un doublon par exemple) coûte 10 $, ou coût de correction. Une donnée non vérifiée coûte quant à elle 100 $. C'est le coût de l'échec.
Selon Gartner, chaque année, la mauvaise qualité des données coûte en moyenne 12,9 millions de dollars aux entreprises, tous secteurs confondus.
La non-conformité des données produit est un risque au coût très élevé pour les professionnels de la grande consommation. Ce risque mobilise des équipes entières au sein d’une organisation, parfois transverses, car le contrôle de la conformité des données produit est hautement dommageable. Forrester estime qu’une entreprise économise 112 000 € sur 5 ans en évitant les pénalités de non-conformité.
Bien que le fournisseur soit l’expert produit et donc l’expert de la donnée, c’est sur le distributeur, considéré comme le diffuseur de l’information, que pèse le risque. Les pénalités dues à des étiquetages non conformes peuvent rapidement grignoter ses marges : à titre d’exemple, le règlement INCO intègre des sanctions pénales et des amendes de plusieurs centaines d’euros par point de vente pour chaque étiquette non conforme.
Le processus de gestion de la donnée produit implique différentes équipes chez le distributeur comme chez le fournisseur. Le contrôle de la qualité de la donnée implique ces mêmes équipes, ou du moins une grande partie.
Voici les équipes distributeurs gravitant autour de la donnée produit, notamment pour leur collecte :
L’organisation en silos provoque de nombreux échanges fragmentés entre distributeurs et fournisseurs, ou au sein des équipes distributeurs. Ces échanges sont manuels, chronophages et sources d’erreurs.
Par ailleurs, l’utilisation d'une multitude d'outils rend les processus de contrôle chronophages et inefficaces. C'est le cas, par exemple, lorsqu'il existe différents outils de contrôle et de vérification, avec des contrôles effectués à différents endroits à des moments différents (PIM, emails, fichiers Excel, systèmes propres, outils dédiés aux médias, etc…).
Ces outils sont archaïques et nécessitent des mises à jour régulières pour prendre en charge l’augmentation du volume de données, parfois des opérations de maintenance. Ils sont dénués de fonctionnalités permettant des corrections automatiques via des suggestions.
Ces facteurs nuisent considérablement à la productivité des équipes, et peuvent même affecter leur motivation. Comme le précisent des données internes de Salsify, on note une augmentation annuelle de 56 % du volume des données produit. Autrement dit, tous les deux ans, le volume de données est multiplié par deux. Cette constante croissance du volume de données implique davantage de temps et de tâches de contrôle qui pèsent sur les équipes.
Une information erronée sur un produit peut avoir différentes conséquences : un client insatisfait, qui retourne le produit parce que, par exemple, les dimensions du meuble qu’il a commandé étaient inexactes. Un client peut également se montrer, à raison, très mécontent parce que la présence d’un allergène n’était pas indiquée. Dans ce cas, l’erreur peut même avoir des conséquences susceptibles d’affecter la santé du consommateur.
Une information incomplète sera directement sanctionnée par le consommateur. Des données issues de l'Étude consommateurs de Salsify indiquent qu’en moyenne, 46 % des consommateurs abandonnent leur panier à cause d’un manque d'information produit.
Par ailleurs, le consommateur d’aujourd’hui est exigeant : dans un mode omnicanal dont il s’est parfaitement approprié les codes, il suit un parcours non linéaire et discontinu. Il s’attend à trouver les mêmes informations sur un produit, qu’il effectue sa recherche sur un réseau social, sur l’application d’une enseigne ou en magasin. Selon Glady, seuls 29 % des consommateurs considèrent que leur expérience est cohérente sur tous les canaux.
Enfin, les informations erronées occasionnent davantage de retours produit. Selon Statista, entre 5 et 15 % des articles sont retournés par les acheteurs aux États-Unis, 25 % pour les vêtements, suivis par les chaussures (15 %). En 2021, les coûts liés aux retours seuls ont été estimés à 550 milliards de dollars, soit une augmentation de 75 % par rapport à 2016.
Une information produit manquante ou erronée ne va pas seulement faire perdre une vente. Elle va écorner la confiance que le consommateur a dans le distributeur. Cette confiance est indispensable pour amplifier la croissance ou même la créer.
Pour en savoir plus sur les mesures à mettre en oeuvre pour réduire les coûts de la mauvaise qualité de la donnée produit, téléchargez notre nouveau guide « La qualité des données produit au service de votre performance ».
Basée à Toulouse, Aude Chardenon est une ancienne journaliste reconvertie dans le content marketing. Couvrant pendant une dizaine d’années les sujets liés à la transformation digitale du retail et du secteur bancaire, elle suit avec passion les innovations technologiques du commerce sous toutes leurs formes, visibles...
Se démarquer sur le Digital Shelf commence par l'accès au contenu le plus récent de l'industrie. Abonnez-vous à Entre les lignes, notre newsletter mensuelle de contenu, et rejoignez d'autres leaders du commerce.